Tailorable Thermal Expansion of Lightweight and Robust Dual-Constituent Triangular Lattice Material

Author:

Wei Kai1,Peng Yong1,Wen Weibin2,Pei Yongmao2,Fang Daining3

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China e-mail:

2. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China e-mail:

3. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China e-mail:

Abstract

Current studies on tailoring the coefficient of thermal expansion (CTE) of materials focused on either exploring the composition of the bulk material or the design of composites which strongly depend on a few negative CTE materials or fibers. In this work, an approach to achieve a wide range of tailorable CTEs through a dual-constituent triangular lattice material is studied. Theoretical analyses explicitly reveal that through rational arrangement of commonly available positive CTE constituents, tailorable CTEs, including negative, zero, and large positive CTEs can be easily achieved. We experimentally demonstrate this approach through CTE measurements of the specimens, which were exclusively fabricated from common alloys. The triangular lattice material fabricated from positive CTE alloys is shown to yield large positive (41.6 ppm/°C), near-zero (1.9 ppm/°C), and negative (−32.9 ppm/°C) CTEs. An analysis of the collapse strength and stiffness ensures the robust mechanical properties. Moreover, hierarchal triangular lattice material is proposed, and with certain constituents, wide range of tailorable CTEs can be easily obtained through the rationally hierarchal structure design. The triangular lattice material presented here integrates tailorable CTEs, lightweight characteristic, and robust mechanical properties, and is very promising for engineering applications where precise control of thermally induced expansion is in urgently needed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3