Heat Transfer in a Rib and Pin Roughened Rotating Multipass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection

Author:

Wu Hao-Wei1,Zirakzadeh Hootan1,Han Je-Chin2,Zhang Luzeng3,Moon Hee-Koo4

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843

2. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843 e-mail:

3. Solar Turbines Incorporated, 2200 Pacific Highway, San Diego, CA 92186 e-mail:

4. Solar Turbines Incorporated, 2200 Pacific Highway, San Diego, CA 92186

Abstract

A multipassage internal cooling test model with a 180 deg U-bend at the hub was investigated. The flow is radially inward at the inlet passage while it is radially outward at the trailing edge passage. The aspect ratio (AR) of the inlet passage is 2:1 (AR = 2) while the trailing edge passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45 deg, were configured on both leading surface (LE) and trailing surface (TR) along the inlet passage, and also at the inner half of the trailing edge passage. Three rows of cylinder-shaped pin fins with a diameter of 3 mm were placed at both LE and TR at the outer half of the trailing edge passage. For without turning vane case, heat transfer on LE at hub turn region is increased by rotation while it is decreased on the TR. The presence of turning vane reduces the effect of rotation on hub turn portion. The combination of ribs, pin-fin array, and mass loss of cooling air through side wall slot ejection results in the heat transfer coefficient gradually decreased along the trailing edge passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for with and without turning vane cases, and with channel orientation angle β at 90 deg and 45 deg.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3