Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor

Author:

Sirirermrux N.1,Laohalidanond K.2,Kerdsuwan S.2

Affiliation:

1. The Joint Graduate School of Energy & Environment, Center of Excellence on Energy Technology and Environment, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bangmod, Thung Kru, Bangkok 10140, Thailand e-mail:

2. Department of Mechanical and Aerospace Engineering, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand e-mail:

Abstract

Surrogate municipal solid waste (MSW) has been prepared to represent high plastic content waste with low fixed carbon in order to be utilized for feedstock for the gasification and pyrolysis. The major components are plastic (PE and PP), food and kitchen waste, and paper, whereas the minor components are textile, rubber, and biomass. Reactions were conducted in small drop tube fixed bed reactor with isothermal reaction temperature at 700, 800, and 900 °C. Steam was supplied as the gasifying agent for the main purpose of producing hydrogen-rich gas. Pyrolysis was also conducted at the same condition to observe the characteristic differences. Producer gas, including H2, CH4, and CO, of both the reactions was a function of the temperature, whereas CO2 showed a reversed trend when the reaction temperature was increased. Simple kinetic models of those gaseous formations were studied for describing the related parameters. It is challenging to determine the kinetics of the individual gas generation while most kinetic studies have focused on mass deterioration. The commonly used kinetic model of nucleation of Avrami–Erofe'ev (A2) could well predict the mechanism of the gas formation of gasification. In parallel, the pyrolysis conformed to the A3 model due to the slower rate of char and tar decomposition when the gasifying agent was absent. The activation energy of each gaseous species and the fitting of experimental data with the selected models are examined in this study.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3