Aeroelastic Instability in Transonic Fans

Author:

Vahdati Mehdi1,Cumpsty Nick1

Affiliation:

1. Mechanical Engineering Department, Imperial College London, Exhibition Road, London SW7 2AZ, UK e-mail:

Abstract

This paper describes stall flutter, which can occur at part speed operating conditions near the stall boundary. Although it is called stall flutter, this phenomenon does not require the stalling of the fan blade in the sense that it can occur when the slope of the pressure rise characteristic is still negative. This type of flutter occurs with low nodal diameter forward traveling waves and it occurs for the first flap (1F) mode of blade vibration. For this paper, a computational fluid dynamics (CFD) code has been applied to a real fan of contemporary design; the code has been found to be reliable in predicting mean flow and aeroelastic behavior. When the mass flow is reduced, the flow becomes unstable, resulting in flutter or in stall (the stall perhaps leading to surge). When the relative tip speed into the fan rotor is close to sonic, it is found (by measurement and by computation) that the instability for the fan blade considered in this work results in flutter. The CFD has been used like an experimental technique, varying parameters to understand what controls the instability behavior. It is found that the flutter for this fan requires a separated region on the suction surface. It is also found that the acoustic pressure field associated with the blade vibration must be cut-on upstream of the rotor and cut-off downstream of the rotor if flutter instability is to occur. The difference in cut off conditions upstream and downstream is largely produced by the mean swirl velocity introduced by the fan rotor in imparting work and pressure rise to the air. The conditions for instability therefore require a three-dimensional geometric description and blades with finite mean loading. The third parameter that governs the flutter stability of the blade is the ratio of the twisting motion to the plunging motion of the 1F mode shape, which determines the ratio of leading edge (LE) displacement to the trailing edge (TE) displacement. It will be shown that as this ratio increases the onset of flutter moves to a lower mass flow.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference12 articles.

1. Vahdati, M., and Cumpsty, N. A., 2012, “A Mechanism of Aeroelastic Instability in Transonic Fans,” 13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, University of Tokyo, Tokyo, Japan, Sept. 11–14, Paper No. 13-I-5.

2. Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids;AIAA J.,2000

3. Mechanisms and Prediction Methods for Fan Blade Stall Flutter;AIAA J. Propul. Power,2001

4. A Computational Study of Intake Duct Effects on Fan Flutter Stability;AIAA J.,2002

5. Validation of Numerical Simulation for Rotating Stall in a Transonic Fan;ASME J. Turbomach.,2013

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3