Behavior of Geogrid-Reinforced Railroad Ballast Particles Under Different Loading Configurations During Initial Compaction Phase

Author:

Liu Shushu1,Huang Hai2,Qiu Tong1

Affiliation:

1. Pennsylvania State University, University Park, PA

2. Pennsylvania State University, Altoona, PA

Abstract

A railroad ballast or subballast layer is composed of unbound granular particles. The ballast/subballast initial compaction phase occurs immediately the construction or maintenance of a track structure is finished. The particles are densified into a more compact state after certain load repetitions. Geogrids are commonly used in railroad construction for reinforcement and stabilization. Currently heavy haul trains are increasing the loads experienced by the substructural layers, which changes behavior of reinforced granular particles. This paper presents a series of ballast box tests to investigate the behavior of geogrid-reinforced unbound granular particles with rectangular (BX) and triangular (TX) shaped geogrids during the compaction phase. Three types of tests were conducted: one without geogrid as a control, one with a sheet of rectangular shaped geogrid, and the other one with a sheet of triangular shaped geogrid. The geogrid was placed at the interface between subballast and subgrade layers. A half section of a railroad track structure consisting of two crossties, a rail, ballast, subballast and subgrade was constructed in a ballast box. Four wireless devices - “SmartRocks”, embedded underneath the rail seat and underneath the shoulder at the interface of ballast-subballast, and subballast-subgrade layers, respectively, to monitor particle movement under cyclic loading. The behavior of the unbound aggregates in the three sections under two different loading configurations were compared. The results indicated that the inclusion of the geogrid significantly decreased accumulated vertical displacement on the ballast surface, ballast particle translation and rotation under a given repeated loading configuration. The results also demonstrated the effectiveness of the SmartRock device and its potential for monitoring behavior of ballast particles in the field.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3