Jet Breakup and Mixing Throat Lengths for the Liquid Jet Gas Pump

Author:

Cunningham R. G.1,Dopkin R. J.2

Affiliation:

1. The Pennsylvania State University, University Park, Pa.

2. E. I. DuPont de Nemours and Co., Textile Fibers Dept., Spruance Plant, Richmond, Va.

Abstract

Gas compression with a liquid jet occurs isothermally and hence with minimum work. Performance characteristics of the liquid jet gas pump (efficiency and compression ratio versus inlet volumetric flow ratio) are predicted accurately by a one-dimensional analysis providing the mixing zone remains in the throat. Jet breakup was investigated to enable prediction of required throat length and to improve efficiency. Effects of throat length, nozzle contour and spacing, nozzle-throat area ratio (0.15 to 0.45), jet velocity and suction pressure were investigated. Optimum throat lengths were found; corresponding efficiencies exceed 40 percent. Two jet breakup flow regimes were found: impact and jet disintegration. For the impact regime, jet breakup length-depends on inlet velocity ratio, jet Reynolds number and nozzle-to-throat area ratio. Optimum throat lengths were found to be an empirical function of nozzle-to-throat area ratio and ranged from 12 to 32 throat dia. These results, coupled with the one-dimensional model, permit design of efficient liquid jet gas pumps.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3