Affiliation:
1. Lehrstuhl A fu¨r Thermodynamik, Technische Universita¨t, Arcisstr. 21, 8000 Munich 2, Federal Republic of Germany
Abstract
Increasing possibilities of computer-aided data processing have fostered a revival of image-forming optical techniques in heat and mass transfer as well as in fluid dynamics. Optical measuring techniques can provide comprehensive and detailed information on the formation of phase interfaces, particle movement, or the size distribution of droplet swarms. Holographic interferograms contain full information, not only about boundary layers restricting transport processes, but also on local coefficients of heat and mass transfer. Laser-induced fluorescence promotes a better understanding of combustion processes by conveying insights into the concentration and the temperature in and around a flame. For describing complicated phenomena in fluid dynamics or in heat transfer by computer programs, global experimental information is not sufficient. Optical techniques provide local data without disturbing the process and with a high temporal resolution. By using the results of optical measuring techniques, it is possible to improve computer programs that describe physical processes. Optical techniques are also very sensitive touchstones for checking the quality of such programs.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献