Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals

Author:

Qiu T. Q.1,Tien C. L.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

This work studies heat transfer mechanisms during ultrafast laser heating of metals from a microscopic point of view. The heating process is composed of three processes: the deposition of radiation energy on electrons, the transport of energy by electrons, and the heating of the material lattice through electron-lattice interactions. The Boltzmann transport equation is used to model the transport of electrons and electron-lattice interactions. The scattering term of the Boltzmann equation is evaluated from quantum mechanical considerations, which shows the different contributions of the elastic and inelastic electron-lattice scattering processes on energy transport. By solving the Boltzmann equation, a hyperbolic two-step radiation heating model is rigorously established. It reveals the hyperbolic nature of energy flux carried by electrons and the nonequilibrium between electrons and the lattice during fast heating processes. Predictions from the current model agree with available experimental data during subpicosecond laser heating.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3