Selective Modulation of Endothelial Cell [Ca2+]i Response to Flow by the Onset Rate of Shear Stress

Author:

Blackman Brett R.1,Thibault Lawrence E.2,Barbee Kenneth A.2

Affiliation:

1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104

2. School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104

Abstract

The response of endothelial cells (ECs) to their hemodynamic environment strongly influences normal vascular physiology and the pathogenesis of atherosclerosis. Unique responses to the complex flow patterns in lesion-prone regions imply that the temporal and spatial features of the mechanical stimuli modulate the cellular response to flow. We report the first systematic study of the effects of temporal gradients of shear stress on ECs. Flow was applied to cultured ECs using a novel cone-and-plate device allowing precise and independent control of the shear stress magnitude and the onset rate. Intracellular free calcium concentration [Ca2+]i increased rapidly following the onset of flow, and the characteristics of the transient were modulated by both the shear stress magnitude and onset rate. ECs were most sensitive to shear stress applied at physiological onset rates. Furthermore, the relative contribution of extracellular calcium and IP3-mediated release were dependent upon the specific flow regime. [S0148-0731(00)01003-7]

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3