Hydrofoil Cavitation Under Strong Thermodynamic Effect

Author:

Gustavsson Jonas P. R.1,Denning Kyle C.1,Segal Corin1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611

Abstract

Cavitation was studied for a NACA0015 hydrofoil using a material that simulates cryogenic behavior. Several angles of attack and flow speeds up to 8.6m∕s were tested. The material used, 2-trifluoromethyl-1,1,1,2,4,4,5,5,5-nonafluoro-3-pentanone, hereafter referred to as fluoroketone, exhibits a strong thermodynamic effect even under ambient conditions. Static pressures were measured at seven chordwise locations along the centerline of the hydrofoil suction side and on the test section wall immediately upstream of the hydrofoil. Frequency analysis of the test section static pressure showed that the amplitude of the oscillations increased as the tunnel speed increased. A gradual transition corresponding to the Type II-I sheet cavitation transition observed in water was found to occur near σ∕2α=5 with Strouhal numbers based on chord dropping from 0.5 to 0.1 as the cavitation number was reduced. Flash-exposure high-speed imaging showed the cavity covering a larger portion of the chord for a given cavitation number than in cold water. The bubbles appeared significantly smaller in the current study and the pressure data showed increasing rather than constant static pressure in the downstream direction in the cavitating region, in line with observations made in literature for other geometries with fluids exhibiting strong thermodynamic effect.

Publisher

ASME International

Subject

Mechanical Engineering

Reference12 articles.

1. Ruggeri, R. S., and Gelder, T. F., 1964, “Cavitation and Effective Liquid Tension of Nitrogen in a Tunnel Venturi,” NASA Report No. TN D-2088.

2. Cryogenic Cavitating Flow in 2D Laval Nozzle;Tani;J. Therm. Sci.

3. An Experimental Investigation of Thermal Effects in a Cavitating Inducer;Franc

4. Correlations of Thermodynamic Effects for Developed Cavitation;Billet;ASME J. Fluids Eng.

5. Hord, J. , 1973, “Cavitation in Liquid Cryogens,” NASA Report No. CR-2156.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3