Generating Simplified Trapping Probability Models From Simulation of Optical Tweezers System

Author:

Banerjee Ashis Gopal1,Balijepalli Arvind2,Gupta Satyandra K.1,LeBrun Thomas W.3

Affiliation:

1. Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742

2. Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742; Precision Engineering Division, Manufacturing Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899

3. Precision Engineering Division, Manufacturing Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

This paper presents a radial basis function based approach to generate simplified models to estimate the trapping probability in optical trapping experiments using offline simulations. The difference form of Langevin’s equation is used to perform physically accurate simulations of a particle under the influence of a trapping potential and is used to estimate trapping probabilities at discrete points in the parameter space. Gaussian radial basis functions combined with kd-tree based partitioning of the parameter space are then used to generate simplified models of trapping probability. We show that the proposed approach is computationally efficient in estimating the trapping probability and that the estimated probability using the simplified models is sufficiently close to the probability estimates from offline simulation data.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3