Numerical Investigations of the Efficiency of Circulation Control in a Compressor Stator

Author:

Vorreiter Arne12,Fischer Susanne13,Saathoff Horst14,Radespiel Rolf53,Seume Joerg R.52

Affiliation:

1. Mem. ASME

2. Institute of Turbomachinery and Fluid Dynamics, Leibniz Universitaet Hannover, 30167 Hannover, Germany

3. Institute of Fluid Mechanics, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany

4. Siemens AG, Energy Sector, 45473 Muelheim an der Ruhr, Germany

5. Senior Mem. ASME

Abstract

Airfoil active flow control has been attempted in the past in order to increase the permissible loading of boundary layers in gas turbine components. The present paper presents a stator with active flow control for a high-speed compressor using a Coanda surface near the trailing edge in order to inhibit boundary layer separation. The design intent is to reduce the number of vanes while—in order to ensure a good matching with the downstream rotor—the flow turning angle is kept constant. In a first step, numerical simulations of a linear compressor cascade with circulation control are conducted. The Coanda surface is located behind an injection slot on the airfoil suction side. Small blowing rates lead to a gain in efficiency associated with a rise in static pressure. In a second step, this result is transferred to a four-stage high-speed research compressor, where the circulation control is applied in the first stator. The design method and the first results are based on steady numerical calculations. The analysis of these results shows performance benefits of the concept. For both the cascade and the research compressor, the pressure gain and efficiency are shown as a function of blowing rate and jet power ratio. The comparison is performed based on a dimensionless efficiency, which takes into account the change in power loss.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3