Hydrodynamic Cavitation Downstream a Micropillar Entrained Inside a Microchannel—A Parametric Study

Author:

Nayebzadeh Arash1,Tabkhi Hanieh1,Peles Yoav2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 e-mail:

2. Fellow ASME Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 e-mail:

Abstract

Hydrodynamic cavitation downstream a range of micropillar geometries entrenched in a microchannel were studied experimentally. Pressurized helium gas at the inlet tank and vacuum pressure at the outlet propelled distilled water through the device and trigger cavitation. The entire process from cavitation inception to the development of elongated attached cavity was recorded. Three modes of cavitation inception were observed and key parameters of cavitation processes, such as cavity length and angle of attachment, were compared among various micropillar geometries. Cavitation downstream of a triangular micropillar was found to have a distinct inception mode with relatively high cavitation inception numbers. After reaching its full elongated form, it prevailed through a larger system pressures and possessed the longest attached cavity. Cavity angle of attachments was predominantly related to the shape of the micropillar. Micropillars with sharp vertex led to lower cavity attachment angles close to the flow separation point, while circular micropillars resulted in higher angles. Twin circular micropillars have a unique cavitation pattern that was affected by vortex shedding. Fast Fourier transformation (FFT) analysis of the cavity image intensity revealed transverse cavity shedding frequencies in various geometries and provided an estimation for vortex shedding frequencies.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3