Small Cryogenic Regenerator Performance

Author:

Ackermann R. A.1,Gifford W. E.2

Affiliation:

1. Research and Development Directorate, U. S. Army Electronics Command, Fort Monmouth, N. J.

2. Department of Mechanical Engineering, Syracuse University, Syracuse, N. Y.

Abstract

The small, highly efficient, thermal regenerators used in cryogenic refrigerators present a very complex problem in analysis and design. Many effects which are negligible in larger, less efficient, regenerators produce sizable thermal losses in these small units and must be considered if their performance is to be calculated accurately. Included among these are longitudinal heat conduction, temperature-dependent property variations, surface, feed gas flow, and end effects. This paper describes these effects and presents the results of an analytical and experimental investigation conducted to determine the magnitude and physical nature of the resulting thermal losses. Included also is a description of the mathematical parallel flow analogy that was used to overcome the poor computational time accuracy characteristics of the finite difference method used to calculate regenerator performance.

Publisher

ASME International

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the Efficiency of a Gifford–Mcmahon Cryogenic Refrigerator;Chemical and Petroleum Engineering;2019-09

2. System performance analysis of Gifford-McMahon cooler;Cryogenics;1995-01

3. An approximate thermal analysis of Stirling engine regenerators;KSME Journal;1993-06

4. A Heat-Balance Analysis of a Gifford-McMahon Cryorefrigerator;Advances in Cryogenic Engineering;1971

5. New Refrigerators;Introduction to High-Temperature Superconductivity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3