Affiliation:
1. School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
Abstract
Due to their excellent compliance and high thermal conductivity, dry carbon nanotube (CNT) array interfaces are promising candidates to address the thermal management needs of power dense microelectronic components and devices. However, typical CNT growth temperatures (∼800°C) limit the substrates available for direct CNT synthesis. A microwave plasma chemical vapor deposition and a shielded growth technique were used to synthesize CNT arrays at various temperatures on silicon wafers. Measured growth surface temperatures ranged from 500°Cto800°C. The room-temperature thermal resistances of interfaces created by placing the CNT covered wafers in contact with silver foil (silicon-CNT-silver) were measured using a photoacoustic technique to range from approximately 7mm2°C∕Wto19mm2°C∕W at moderate pressures. Thermal resistances increased as CNT array growth temperature decreased primarily due to a reduction in the average diameter of CNTs in the arrays.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献