Ceramic Stationary Gas Turbine Development Program — Design and Test of a First Stage Ceramic Nozzle

Author:

Faulder Leslie1,McClain John1,Edwards Bryan1,Parthasarathy Vijay1

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA

Abstract

The goal of the Ceramic Stationary Gas Turbine(CSGT) Development Program, under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT), is to improve the performance (fuel efficiency, output power, exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. Phase II of this program includes detailed engine and component design, procurement and testing. This paper will review the design and test of the first stage ceramic nozzle for the Centaur 50S engine. For this test an uncooled monolithic ceramic nozzle made from SN-88 silicon nitride(NGK Insulators Ltd.) was used. A major challenge in the successful introduction of ceramic parts into a gas turbine is the design of the interface between the ceramic parts and metallic components. The design and attachment of the ceramic nozzle was greatly influenced by these considerations. Metallic components in the stationary structure of the turbine have been added or redesigned to retrofit the ceramic nozzle into the all metallic Centaur 50S engine. This paper will also discuss special handling and assembly techniques used to install the ceramic nozzle into the engine. Trial assemblies were used in the engine build process, this proved most beneficial in identifying problems and reducing the risk of damage to the ceramic nozzles. Assembly techniques were designed to reduce assembly loads and to eliminate blind assemblies. Before installing any ceramic nozzles into the engine they were first required to successfully pass both mechanical and thermal proof tests. Details of these proof tests and the final full load engine test will be described in this paper. The engine test was run at a turbine rotor inlet temperature(TRIT) of 1010°C. Total number of engine starts was six, and the total run time was approximately 10 hours.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3