Predictions of Turbulent Flow in a Turbine Stator/Rotor Passage

Author:

Amano R. S.1,Song B.1,Sitarama S.1,Lin B.1

Affiliation:

1. University of Wisconsin-Milwaukee, Milwaukee, WI

Abstract

Numerical study on a three-dimensional turbulent flow in a turbine stator/rotor passage is presented in this paper. The standard k-ε model was used for the first phase of the turbulence computations. The computations were further extended by employing the full Reynolds-stress closure model (RSM). The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillations in pressure and velocity due to non-staggered grids are eliminated by using a special interpolation method. The predicted midspan pressure coefficients using the k-ε model and the RSM are compared with the experimental data. It was shown that the present results obtained by using either model are fairly reasonable. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that the two turbulence models predict different results for the turbulence kinetic energy. This variation was identified as being related to some non-isotropic turbulence occurring near the blade surface due to the severe acceleration of the flow. It was thus proven that the models based on the RSM give more realistic predictions for highly turbulent cascade flow computations than a Boussinesq viscosity model.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3