The Dynamic Strength of a Representative Double Layer Prismatic Core: A Combined Experimental, Numerical, and Analytical Assessment

Author:

Ferri Enrico1,Deshpande V. S.1,Evans A. G.2

Affiliation:

1. Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

2. Department of Mechanical Engineering and Department of Materials, University of California, Santa Barbara, CA 93106

Abstract

Dynamic out-of-plane compressive testing was used to characterize the dynamic strength of stainless steel prismatic cores with representative double layer topology to be employed in sandwich panels for blast protection. Laboratory-scaled samples of the representative core unit cell were manufactured (relative density of 5.4%) and tested at constant axial impact velocities (ranging from quasi-static to 140 ms−1). The dynamic strength was evaluated by measuring the stresses transmitted to a direct impact Hopkinson bar. Two-dimensional, plane strain, finite element calculations (with a stationary back face) were used to replicate the experimental results upon incorporating imperfections calibrated using the observed dynamic buckling modes. To infer the response of cores when included in a sandwich plate subject to blast loading, the finite element model was modified to an unsupported (free-standing) back face boundary condition. The transmitted stress is found to be modulated by the momentum acquired by the back face mass and, as the mass becomes larger, the core strength approaches that measured and simulated for stationary conditions. This finding justifies the use of a simple dynamic compression test for calibration of the dynamic strength of the core. An analytical model that accounts for the shock effects in a homogenized core and embodies a simple dual-level dynamic strength is presented and shown to capture the experimental observations and simulated results with acceptable fidelity. This model provides the basis for a constitutive model that can be used to understand the response of sandwich plates subject to impulsive loads.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3