Onset of Nonlinearity in the Elastic Bending of Blocks

Author:

Destrade M.1,Gilchrist M. D.1,Murphy J. G.2

Affiliation:

1. School of Electrical, Electronic, and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland

2. Department of Mechanical Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland

Abstract

The classical flexure problem of nonlinear incompressible elasticity is revisited assuming that the bending angle suffered by the block is specified instead of the usual applied moment. The general moment-bending angle relationship is then obtained and is shown to be dependent on only one nondimensional parameter: the product of the aspect ratio of the block and the bending angle. A Maclaurin series expansion in this parameter is then found. The first-order term is proportional to μ, the shear modulus of linear elasticity; the second-order term is identically zero because the moment is an odd function of the angle; and the third-order term is proportional to μ(4β−1), where β is the nonlinear shear coefficient, involving third-order and fourth-order elasticity constants. It follows that bending experiments provide an alternative way of estimating this coefficient and the results of one such experiment are presented. In passing, the coefficients of Rivlin’s expansion in exact nonlinear elasticity are connected to those of Landau in weakly (fourth-order) nonlinear elasticity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Large Elastic Deformations of Isotropic Materials. VI. Further Results in the Theory of Torsion, Shear and Flexure;Rivlin;Proc. R. Soc. London, Ser. A

2. Plane Strain Bending of Strain-Stiffening Rubber-Like Rectangular Blocks;Kanner;Int. J. Solids Struct.

3. Surface Instabilities in Compressed or Bent Rubber Blocks;Gent;Rubber Chem. Technol.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3