Crack Growth Under High-Cycle Thermal Fatigue Loading: Effects of Stress Gradient and Relaxation in a Crack Network

Author:

Kamaya Masayuki1

Affiliation:

1. Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Fukui 919-1205, Japan

Abstract

High-cycle thermal fatigue is a critical problem in nuclear power plants. To prevent crack initiation, Japan Society of Mechanical Engineers has issued a guideline for design, although growth analysis was not included. In this study, the feasibility of incorporating crack growth analysis into the design and integrity evaluation was investigated. Two characteristics of thermal fatigue loading were considered. The first was the effect of stress gradient in the depth direction. It was shown that the steep stress gradient near the surface significantly reduced the stress intensity factor (SIF) of deep cracks. Assuming that crack growth was arrested by small SIF values, it was judged possible to leave certain detected cracks unrepaired. Otherwise, the cracks should be removed regardless of their size. The other characteristic was the displacement controlled boundary condition. Through finite element analyses, it was revealed that the displacement controlled boundary condition reduced the SIF, and the magnitude of its reduction depended on the crack depth and boundary length. It was concluded that, under thermal fatigue loading, the cracks that were detected in the in-service inspection had already been arrested if they did not penetrate the wall thickness. It is effective to consider the crack arrest scenario for design and integrity assessment of cracked components under high-cycle thermal fatigue loading.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3