Design of a High Efficiency Fuel Cell dc/dc Converter Dedicated to Transportation Applications

Author:

Narjiss Abdellah1,Depernet Daniel1,Gustin Frédéric1,Hissel Daniel1,Berthon Alain1

Affiliation:

1. FEMTO-ST Laboratory/ENISYS Department, FCLAB, Rue Thierry Mieg, F-90010 Belfort, France

Abstract

This work consists in a theoretical and practical study of a dc/dc converter designed to be coupled to a fuel cell stack in transport applications. It also proposes analysis and control of the whole system using digital signal processor (DSP) controller. The research is focused on the integration of a polymer electrolyte fuel cell (PEFC) stack in an embedded system. The fuel cell is characterized by a low-voltage high-current electrical power deliverty. Therefore, it is obvious that a dedicated power interface is necessary to adapt and fix voltage and current levels accordingly to the application requirements. In our case, the power conversion will be done by a high-frequency-transformer-based DC/DC converter. The use of a high frequency transformer allows obtaining significant output voltage ratio (approximately 12 in our case), high efficiency, reduce compactness of used elements and limited semi-conductors losses.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3