Oscillatory Flow in a Physical Model of a Thin Slab Casting Mould With a Bifurcated Submerged Entry Nozzle

Author:

Lawson Nicholas J.1,Davidson Malcolm R.2

Affiliation:

1. Department of Aerospace, Power and Sensors, Royal Military College of Science, Cranfield University, Shrivenham, Wiltshire. SN6 8LA, United Kingdom

2. Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

Laser Doppler anemometry (LDA) measurements are presented of the oscillatory flow in a 33% scale water model of thin slab casting mould when the flow enters as two lateral jets through a bifurcated nozzle. The submerged entry nozzle (SEN) and the mould were geometrically scaled to be representative of industrial thin slab casters. Mean and RMS LDA velocity measurements were taken at three selected points in the region surrounding the SEN, at 500 points in the central plane parallel to the broad face of the mould, and at points in selected transverse sections, for casting rates up to 1.53 m/min. Flow visualization was also taken at two selected planes in the mould. The LDA results showed each jet to form an upper and lower recirculation zone with the lower zones adjacent to one another bounded by the jets and the mould walls and the upper zones bounded by the jet, the SEN, the mould walls and the free surface. Both jets were found to have most oscillatory energy at frequencies below 5 Hz with high energy low frequency modes occurring at frequencies below 0.2 Hz. However, no single dominant frequency occurred in the spectrum and flow visualization revealed an apparently chaotic flow pattern in the oscillation. Midpoint jet deflection was restricted to 6–8 mm RMS, and no coherence was observed between jet (and free surface) movements on either side of the mould. The time averaged flow pattern was found to be almost symmetric across the wide face of the mould. It is concluded that both shear layer instability in the impinging jets, and deflection of the jets due to cross-flow at the SEN-mould wall, contribute to the flow oscillation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3