Incorporating the Higher Harmonics in VIV Fatigue Predictions

Author:

Jhingran Vikas1,Vandiver J. Kim1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Vortex-Induced Vibrations (VIV) are an important source of fatigue damage for risers in the Oil and Gas industry. Results from resent VIV experiments by Vandiver et al. [1] indicate significant dynamic strain energy at not only the Strouhal frequency, but also its harmonics. In certain regions of the pipe, these higher harmonics accounted for more that half of the measured RMS strain and increased fatigue damage by a factor exceeding twenty. However, the state-of-the-art in VIV prediction only accounts for the vibrations at the Strouhal frequency. Preliminary results from a second set of experiments, described in this paper, confirm the importance of the higher harmonics in fatigue life estimates of pipes. Further, the authors formulate an approach to incorporate the higher harmonics in VIV related fatigue design. Finally, the authors identify the estimation of the higher harmonics, in both location and magnitude, as an important area of ongoing research, the results of which will be required to implement this proposed method.

Publisher

ASMEDC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3