The Influence of Pipeline Insulation on Installation Temperature, Effective Force and Pipeline Buckling

Author:

Anderson Murray1,Bruton David2,Carr Malcolm3

Affiliation:

1. Atkins Boreas, Ltd., Aberdeen, Scotland, UK

2. Atkins Boreas, Ltd., Weybridge, Surrey, England, UK

3. Atkins Boreas, Ltd., Newcastle upon Tyne, England, UK

Abstract

High-performance insulated pipelines are designed for long cool-down times in operation. During the installation of such pipelines, the heat within the pipe as it leaves the lay vessel is not easily lost to the surrounding seawater. The ambient temperatures on the lay vessel, combined with significant heat input during welding and field joint coating, will result in the pipeline leaving the lay vessel at a temperature well above ambient deck temperature. The insulation system ensures that a significant amount of this heat will remain within the pipeline as it descends to the seabed, resulting in a higher than ambient installation temperature. As the pipeline cools to ambient seabed temperature, it is restrained on the seabed by axial friction thus generating effective tension in the pipeline. The magnitude of the locked in tension will depend on various factors, including the overall heat transfer coefficient, the system heat capacity, the water depth, water column temperature and the lay rate. Any significant locked in tension will influence the buckling behaviour of the pipeline by inhibiting buckle formation and reducing feed-in to lateral buckles. This paper presents a method to assess the temperature loss through the water column during installation of an insulated pipeline and the location, relative to the touchdown point, at which the pipeline becomes fully constrained. The modified as-installed temperature will much improve the accuracy of predicted buckling response at hydro-test or in operation.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A complete analytical solution for axial pipeline walking considering seabed resistance as rigid plastic behaviour;Géotechnique;2021-03-19

2. Finite-Element Modeling of Offshore Pipeline Lateral Buckling;Journal of Pipeline Systems Engineering and Practice;2019-11

3. Pipeline Technology-Expansion and Global Buckling;Encyclopedia of Maritime and Offshore Engineering;2017-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3