Fault Detection for Gas Turbine Sensors Using I/O Dynamic Linear Models: Methodology of Fault Code Generation

Author:

Bettocchi R.1,Spina P. R.1,Azzoni P. M.1

Affiliation:

1. Universitá di Ferrara, Ferrara, Italy

Abstract

This paper presents a methodology of sensor diagnosis which appears to be particularly suitable also for application in the field of small/medium power size industrial gas turbines. The methodology is based on the Analytical Redundancy technique and uses ARX (Auto Regressive with eXternal input) MISO (Multi-Input/Single-Output) linear dynamic models obtained from time series data of the gas turbine operating condition. The linear models allow the on-line calculation of some measurable parameter starting from the values of other measured parameters. The comparison between computed and measured values of the same parameters allows setting-up a vector of residuals which, if compared with the columns of the fault matrix, permits the identification of a possible sensor fault. The initial applications of the methodology to a single-shaft industrial gas turbine show an unambiguous and certain detection and isolation of fault in sensors used both in the measurement only and in feedback by the machine control system.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conclusions;Diagnosis and Fault‐tolerant Control 2;2021-12-03

2. Optimum Planning of Electricity Production;Journal of Engineering for Gas Turbines and Power;2009-07-20

3. Setting Up of a Probabilistic Neural Network for Sensor Fault Detection Including Operation With Component Faults;Journal of Engineering for Gas Turbines and Power;2003-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3