A Monte Carlo Fuel Assembly Model Validation Adopting Post Irradiation Experiment Dataset

Author:

Loi Lorenzo1,Lorenzi Stefano1,Cammi Antonio1ORCID,Introini Carolina1

Affiliation:

1. Department of Energy, Politecnico di Milano , Via Lambruschini, 4, Milano 20156, MI, Italy

Abstract

Abstract Within an energy system where nuclear reactors will likely play a critical role, it is fundamental to have access to accurate and reliable computational tools that can predict the plants' behavior under different operating conditions; compared to other energy sources, models and analysis methods for nuclear systems should be able to provide, among other things, detailed information on reactor criticality and fuel evolution. Thanks to the advancements in computational hardware, using three-dimensional codes to obtain a local description of the reactor core has now become feasible, not only for what concerns deterministic codes but also for Monte Carlo (MC) based codes. Those computational methods must be compared with experimental measurements to assess their reliability. For this reason, the 3D Monte Carlo code serpent is currently being validated for light water reactor fuel cycle simulations. This work will compare the isotopic concentrations measured in a Post-Irradiation Experiment (PIE) and the results of the Monte Carlo routine, examining the Takahama-3 fuel assembly test case. Since key information related to the history of the plant under consideration is available, it was possible to follow the depletion cycles of two fuel rods (SF95 and SF97) placed in two separate assemblies. From literature reports, more than 35 nuclide species have been measured at different axial locations by destructive analysis following several radiochemical techniques. A sensitivity analysis, aiming to evaluate the impact of design features on the results, was carried out investigat-ing the cross section libraries, the simulation time Discretization and the imposition of an axial time-varying temperature. During the process, systematic sources of geometry-related errors were analyzed as well. Over-all, the model showed good agreement with the experimental data under an acceptable error threshold. The sensitivity studies also showed how the prediction capability could be increased up to +6%, adopting a realistic temperature mesh for the fuel instead of a uniform temperature approach. Finally, this analysis will focus more deeply on the Antimony-125 evolution, whose concentration is the one with the worst agreement to the experimental dataset not only for this work but also for other benchmarks available in the literature: results will show how the prediction error for this nuclide is systematic for all considered codes, and look for possible causes.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference21 articles.

1. Dufek, J., 2009, “ Development of New Monte Carlo Methods in Reactor Physics: Criticality, Non-Linear Steady-State and Burnup Problems,” Ph.D thesis, Royal Institute of Technology (Sweden), Universitetsservice US-AB.

2. A Comparison of Monte Carlo and Deterministic Solvers for Keff and Sensitivity Calculations Tech,2017

3. Technical Development on Burn-Up Credit for Spent LWR Fuel Tech,2001

4. Scale 5.1 Predictions of Pwr Spent Nuclear Fuel Isotopic Compo-Sitions Tech,2010

5. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation – Calvert Cliffs, Takahama, and Three Mile Island Reactors,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3