Theoretical Analysis of a Self-Condensing CO2 Transcritical Power Cycle With Regeneration Involving Dense Particle Suspensions in a Solar Thermal Power Plant

Author:

Modi Atharva1,Tariq Syed1,Lahiri Kaustuv1,Srinivasan Periaswamy1

Affiliation:

1. Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India

Abstract

Abstract The choice of heat transfer fluids (HTFs) significantly dictates the thermal efficiency of the solar power plant. Presently, molten salt is widely used choice owing to its phase, low cost, and non-toxic nature. Along with other alternatives like liquid metals and multiphase fluids, these HTFs are limited to peak operating temperatures ranging from 300 to 550 °C. With the introduction of dense particle suspensions as an HTF, the highest operating temperatures in a solar thermal power plant can reach up to 700 °C, offering considerable scope for improving thermal efficiency. Due to the higher average specific heat as compared to the alternatives, CO2 is a promising working fluid in the considered range of moderately high operating temperatures. The cost of the components and size of the power block make the transcritical CO2 cycle an attractive alternative. The present work analyzes the theoretical efficiency of the proposed cycle, with the peak operating temperature ranging from 550 °C to 700 °C. The effects of the variation in the lower operating pressure and the condensation temperature have also been analyzed. It is observed that thermodynamic efficiencies as high as 40% can be reached at the maximum operating temperature. The optimum combination of the lower operating pressure and the condensation temperature is also noted.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3