Design and Development of An Instrumented Knee Joint for Quantifying Ligament Displacements

Author:

Cui Lei1,Dale Brody1,Allison Garry2,Li Min3

Affiliation:

1. School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia 6845, Australia

2. Curtin Graduate Research School Curtin University, Perth, Western Australia 6845, Australia

3. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Abstract Recently, robotic assistive leg exoskeletons have gained popularity because an increased number of people crave for powered devices to run faster and longer or carry heavier loads. However, these powered devices have the potential to impair knee ligaments. This work was aimed to develop an instrumented knee joint via rapid prototyping that measures the displacements of the four major knee ligaments—the anterior cruciate ligament (ACL), posterior crucial ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL)—to quantify the strain experienced by these ligaments. The knee model consists of a femur, lateral and medial menisci, and a tibia-fibula, which were printed from three dimensional (3D) imaging scans. Nonstretchable cords served as main fiber bundles of the ligaments with their desired stiffnesses provided by springs. The displacement of each cord was obtained via a rotary encoder mechanism, and the leg flexion angle was acquired via a closed-loop four-bar linkage of a diamond shape. The displacements were corroborated by published data, demonstrating the profiles of the displacement curves agreed with known results. The paper shows the feasibility of developing a subject-specific knee joint via rapid prototyping that is capable of quantifying the ligament strain via rapid prototyping.

Funder

Australian Research Council

National Natural Science Foundation of China

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and evaluation of ligament phantoms targeted for shear wave tensiometry;Journal of the Mechanical Behavior of Biomedical Materials;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3