Extremum Seeking for Wind and Solar Energy Applications

Author:

Ghaffari Azad,Krstic Miroslav,Seshagiri Sridhar

Abstract

This paper explores the advantages of extremum seeking (ES) for wind and solar energy applications. The experimental results are also provided for the photovoltaic system. ES is an attractive alternative to perturb and observe (P&O) techniques for solving maximum power point tracking (MPPT) problems in wind and solar systems. As a model-free, real-time optimization approach, ES is well suited for systems with unknown dynamics or those that are affected by high levels of uncertainty or external dynamics, like wind turbines (WT) and PV systems. ES has the dual benefit of rigorously provable convergence and the simplicity of hardware implementation. In addition to a probing signal, the ES algorithm employs only an integrator, as well as optional high-pass and a low-pass filters. Finally, multivariable MPPT based on ES for PV systems are presented, and the validity of the proposed algorithms with experimental results are verified. Experimental results verify the effectiveness of the Newton-based MPPT versus its scalar and multivariable gradient-based counterparts.

Publisher

ASME International

Subject

Mechanical Engineering

Reference7 articles.

1. “Principles of Optimalizing Control Systems and an Application to the Internal Combustion Engine,”,1951

2. “Comparison of photovoltaic array maximum power point tracking techniques,”;IEEE Transactions on Energy Conversion,,2007

3. “Stability of extremum seeking feedback for general nonlinear dynamic systems,”;Automatica,2000

4. “On non-local stability properties of extremum seeking control,”;Automatica,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3