Phase Space Feature Based on Independent Component Analysis for Machine Health Diagnosis

Author:

He Qingbo1,Du Ruxu2,Kong Fanrang1

Affiliation:

1. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

2. Institute of Precision Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR

Abstract

This paper proposes a new feature extraction method based on Independent Component Analysis (ICA) and reconstructed phase space. The ICA-based phase space feature unifies the system dynamics embedded in vibration signal and higher-order statistics expressed in phase spectrum and hence, is effective for machine health diagnosis. The new feature extraction is done in three steps: first, the Phase Space Reconstruction (PSR) is performed to reconstruct a phase space with the dimension covering dynamic structure information; second, the ICA bases are trained by a number of constructed phase points; and finally, the new feature is quantitatively calculated by evaluating the correlation property of transformed coefficients based on ICA bases. The presented feature contains plentiful phase information with the training pattern, which is often under evaluated when using existing methods. It has excellent pattern representation property and can be applied for signal classification and assessment. Experiments in an automobile transmission gearbox validate the effectiveness of the new method.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3