Numerical Study of Mixed Convection of Buoyant Twin Jet

Author:

Nassira Nouali1,Amina Mataoui1

Affiliation:

1. Theoretical and Applied Fluid Mechanics Laboratory (LMFTA), University of Science and Technology Houari Boumediene (USTHB) , Algiers 16111, Algeria

Abstract

Abstract The effect of mixed convection of twin vertical jets is investigated numerically in this paper. The results are presented specifically for flows affected by buoyancy for two parallel jets of same velocities ranging between 0.25 m/s and 5.0 m/s and temperatures between 295 K and 320 K. Both jets generate a slow flow with a temperature difference (with the ambient flow) less or equal to 32 °C (305 K). Predictions of dynamical and thermal parameters are obtained for the merging and combining regions. This study reveals that the trajectory of the two jets is strongly influenced by the ratio of buoyancy to inertial forces. Results indicate that, relative to isotherm jets, the location along the vertical symmetry plane at which the two jets merge (merging point) decreases with increasing jet inlet temperature. It was also found that the location of the merging point is shifted toward the confining wall as the velocity of the jets increases. The behavior law (linear regression), relating to the expansion of the jet, is not verified in the developed region for each value of the inlet velocity and temperature. This is explained by the fact that natural convection is more predominant than forced convection. The results show that the self-similarity of the cross profiles of the mean velocity and the behavior law relating to the expansion of the jet are obtained throughout the developed region.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3