A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis

Author:

Wang S.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

The frictional temperature rises at the microcontacts of rough surfaces are analyzed by characterizing the surfaces as fractals and assuming Hertzian contacts of spherical asperity tips. The maximum temperature rise of a fractal surface domain in the slow sliding regime, where transient effects are negligible, is expressed as a function of thermomechanical properties, sliding speed, friction coefficient, real and apparent contact areas of the fractal domain, and fractal parameters. The distribution density function of the temperature rise at the real contact area is also determined based on the statistical temperature rise distributions of individual microcontacts and the maximum temperature rise of a fractal domain. This function characterizes the fractions of the real contact area subjected to different temperature rises, and can be used to analyze tribological interactions on dry and boundary-lubricated sliding surfaces.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3