Mixing in Axial Flow Compressors: Part II — Measurements in a Single Stage Compressor and a Duct

Author:

Li Y. S.1,Cumpsty N. A.1

Affiliation:

1. Cambridge University, England

Abstract

This paper follows directly from Part I which contains not only the description of the facilities and the results for the C106 four-stage compressor but also the background, list of nomenclature, acknowledgement and references. The discussion and conclusions for Part I and Part II are given here. The single stage compressor results show the significant effects of inlet guide vane (IGV) wakes on mixing across the stage in the so called ‘free stream’ region; in the casing region tip clearance flow is shown to play an important role in mixing. Explanations for these results are given. Investigations were also carried out in a two-dimensional rectangular duct flow to reveal the mixing mechanism in the corner region similar to those formed by blade surfaces and endwalls in a compressor. Turbulent diffusion has been found to be the dominant mechanism in spanwise mixing; anisotropic inhomogeneous turbulent diffusion is mainly responsible for the non-uniform mixing in the corner region. The larger spread of tracer gas in the tangential direction than in the radial direction is mainly caused by the wake dispersion and relative flow motions within the blade wakes as well as secondary flow contributions in the end-wall regions.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3