Affiliation:
1. Department of Engineering Science, University of Oxford, Oxford, UK e-mail:
2. Department of Engineering Science, University of Oxford, Oxford, UK
3. Solar Turbines Inc., San Diego, CA
Abstract
The present experimental investigation considers a full coverage film cooling arrangement with different streamwise static pressure gradients. The film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges and streamwise inclination angles of 20 deg with respect to the liner surface. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (BRs) (at the test section entrance) of 2.0, 5.0, and 10.0, a coolant Reynolds number of 12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 18 and 5, respectively. Data illustrating the effects of contraction ratio, BR, and streamwise location on local, line-averaged, and spatially averaged adiabatic film effectiveness data; and on local, line-averaged and spatially averaged heat transfer coefficient data are presented. Varying BR values are present along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is 4. Dependence on BR indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially averaged adiabatic effectiveness data show vastly different changes with BR for the configurations with contraction ratios of 1 and 4. In addition, much larger effectiveness alterations are present as BR changes from 2.0 to 10.0, when significant acceleration is present and Cr = 4 (in comparison with the Cr = 1 data).
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献