Magnetically Assembling Nanoscale Metal Network Into Phase Change Material—Percolation Threshold Reduction in Paraffin Using Magnetically Assembly of Nanowires

Author:

Su Junwei1,Mirzaee Iman1,Gao Fan2,Liu Xiao1,Charmchi Majid3,Gu Zhiyong2,Sun Hongwei3

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 e-mail:

2. Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 e-mail:

3. Mem. ASME Department of Mechanical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 e-mail:

Abstract

A high throughput manufacturing process to magnetically assembling nanowire (NW) network into paraffin was developed for enhancing conductivity in phase change materials (PCMs) used in energy storage applications. The prefabricated nickel NWs were dispersed in melted paraffin followed by magnetic alignment under a strong magnetic field. Measuring electrical conductivity of the nanocomposite, as well as observing cross section of the sample slice under an optical microscope characterized the alignment of NWs. As a comparison, nickel particles (NPs) based paraffin nanocomposites were also fabricated, and its electrical conductivity with and without applied magnetic field were measured. The effects of aspect ratio of fillers (particles and NWs) and volume concentration on percolation threshold were studied both experimentally and theoretically. It was found that the NW based paraffin nanocomposite has much lower percolation threshold compared to that of particle based paraffin composite. Furthermore, the alignment of particles and NWs under magnetic field significantly reduces the threshold of percolation. This work provides solid foundation for the development of a manufacturing technology for high thermal conductivity PCMs for thermal energy storage applications.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Reference14 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3