Residual Stress Analysis of Bead Welded Low Alloy Steel Plate Specimens Subjected to Post Weld Heat Treatment

Author:

Yanagida Nobuyoshi1,Saito Koichi2

Affiliation:

1. Hitachi, Ltd., Hitachi, Ibaraki, Japan

2. Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki, Japan

Abstract

We developed a residual stress analysis method for bead welded low alloy steel JIS SQV2A (equivalent to ASTM A533B cl. 1) plates subjected to post weld heat treatment (PWHT). Two specimens were fabricated; each was a bead welded low alloy steel plate. One was in the as-welded condition (as-welded specimen) and the other was subjected to PWHT at 625°C (PWHT specimen). Strain gauges were used to measure the distributions of the residual stress in these specimens. The measurement data showed that the longitudinal stress at the center of a bead was 0 MPa and that in the heat-affected zone was 100 MPa. The transverse stress at the center of a bead was 200 MPa in the as-welded specimen. The absolute residual stress was decreased to less than 50 MPa for the PWHT specimen. We conducted finite element analyses to predict the distributions of welding residual stress in these specimens. The amount of phase transformation strain in low alloy steel was taken into account in the welding residual stress analysis, and creep strain was taken into account in the stress mitigation analysis. The results from the analyses agree well with the experimental results. These findings prove that welding residual stress can be simulated during a thermal elastic plastic (TEP) analysis by conducting a phase transformation and taking the generation of creep strain in the PWHT samples into consideration can be used to simulate that stress mitigation.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3