Damage Assessment on Low Cycle Fatigue Properties of Cyclic Pre-Strained Austenitic Stainless Steel

Author:

Fujimura Nao1,Oguma Hiroyuki1,Nakamura Takashi1

Affiliation:

1. Hokkaido University, Sapporo, Hokkaido, Japan

Abstract

The effects of cyclic pre-strain on low cycle fatigue properties of austenitic stainless steel were investigated, and the fatigue damage was assessed based on several parameters such as the full width at half maximum (FWHM) of diffracted X-ray profile and surface roughness of specimens. The strain-controlled tests were conducted under strain ratio Rε = −1 and various constant total strain ranges. Also the change in remnant fatigue lives were investigated when the cyclic pre-strain were applied to the specimens under the different number of cycles which were determined with reference to the usage factor UFpre ranged from 0.2 to 0.8. As a result, the remnant fatigue life of the pre-strained samples became shorter than that of the sample without pre-strain as the UFpre increased. The relationship between the pre-strain damage expressed in UFpre and the remnant fatigue damage in UFpost was roughly described by the cumulative linear damage law: UFpre + UFpost = 1. Namely, the cyclic pre-strain affected the remnant fatigue lives. In order to evaluate the effects of cyclic pre-strain on fatigue lives more precisely, the damage in the cyclic pre-straining processes was estimated by using FWHM and surface roughness. The FWHM of the specimens with pre-strain once decreased with increase in UFpre, and then increased after showing a minimum value. The surface roughness of specimens increased linearly with an increase of the number of pre-straining cycles. These results suggested that the damage due to pre-strain can be assessed by means of FWHM and surface roughness of specimens.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3