Shear Stress Intensity Factors for a Planar Crack With Slightly Curved Front

Author:

Gao Huajian1,Rice James R.1

Affiliation:

1. Division of Applied Sciences, Harvard University, Cambridge, Mass. 02138

Abstract

Recent work (Rice, 1985a) has presented the calculations of the first order variation in an elastic displacement field associated with arbitrary incremental planar advance of the location of the front of a half-plane crack in a loaded elastic full space. That work also indicated the relation of such calculations to a three-dimensional weight function theory for crack analysis and derived an expression for the distribution of the tensile mode stress intensity factor along a slightly curved crack front, to first order accuracy in the deviation of the crack front location from a reference straight line. Here we extend the results on stress intensity factors to the shear modes, solving to similar first order accuracy for the in-plane (Mode 2) and antiplane (Mode 3) shear stress intensity factors along a slightly curved crack front. Implications of results for the configurational stability of a straight crack front are discussed. It is also shown that the concept of line tension, while qualitatively useful in characterizing the crack extension force (energy release rate) distribution exerted on a tough heterogeneity along a fracture path as the crack front begins to curve around it, does not agree with the exact first order effect that is derived here.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Size effects in the toughening of brittle materials by heterogeneities: A non-linear analysis of front deformations;International Journal of Solids and Structures;2023-09

2. An extended Bueckner–Rice theory for arbitrary geometric perturbations of cracks;Journal of the Mechanics and Physics of Solids;2023-03

3. Perturbations of Cracks;Mechanics and Physics of Fracture;2023

4. Introduction to Mechanics of Fracture;Mechanics and Physics of Fracture;2023

5. Quasi-static crack front deformations in cohesive materials;Journal of the Mechanics and Physics of Solids;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3