The Coupler Surface of the RSRS Mechanism

Author:

Rojas Nicolas1,Dollar Aaron M.2

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Avenue, New Haven, CT 06511 e-mail:

2. Department of Mechanical Engineering and Materials Science, Yale University, 15 Prospect Street, New Haven, CT 06511 e-mail:

Abstract

Two degree-of-freedom (2-DOF) closed spatial linkages can be useful in the design of robotic devices for spatial rigid-body guidance or manipulation. One of the simplest linkages of this type, without any passive DOF on its links, is the revolute-spherical-revolute-spherical (RSRS) four-bar spatial linkage. Although the RSRS topology has been used in some robotics applications, the kinematics study of this basic linkage has unexpectedly received little attention in the literature over the years. Counteracting this historical tendency, this work presents the derivation of the general implicit equation of the surface generated by a point on the coupler link of the general RSRS spatial mechanism. Since the derived surface equation expresses the Cartesian coordinates of the coupler point as a function only of known geometric parameters of the linkage, the equation can be useful, for instance, in the process of synthesizing new devices. The steps for generating the coupler surface, which is computed from a distance-based parametrization of the mechanism and is algebraic of order twelve, are detailed and a web link where the interested reader can download the full equation for further study is provided. It is also shown how the celebrated sextic curve of the planar four-bar linkage is obtained from this RSRS dodecic.

Publisher

ASME International

Subject

Mechanical Engineering

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3