An Experimental Study on Nonisothermal Deep Drawing Process Using Aluminum and Magnesium Alloys

Author:

Kaya Serhat1,Spampinato Giovanni1,Altan Taylan1

Affiliation:

1. Engineering Research Center for Net Shape Manufacturing (ERC/NSM), The Ohio State University, Columbus, OH 43210

Abstract

Weight reduction is one of the major goals in the automotive, appliance, and electronics industries. One way of achieving this goal is to use lightweight alloys such as aluminum and magnesium that have high strength to weight ratios. However, due to their limited formability at room temperature, forming needs to take place at elevated temperatures and mostly under nonisothermal conditions. In this study, nonisothermal deep drawing process using aluminum and magnesium alloys was investigated using a servo motor driven press and a heated tool set. Using the flexibility of the servo press kinematics, blanks were heated in the tool set prior to forming. Temperature-time measurements were made at various blank holder interface pressures in order to determine the required dwell time to heat the blank to the forming temperature. Several lubricants for elevated temperature forming were evaluated using the deep draw test, and a PTFE based film was found to be the best performing lubricant. Deep drawing tests were conducted to determine the process window (maximum punch velocity as functions of blank size and temperature) for Al 5754-O and Mg AZ31-O. Maximum punch velocities of 35 mm/s and 300 mm/s were obtained for the Al and Mg alloys, respectively. Comparisons for the Mg alloy sheets from two different suppliers were made and significant differences in formability were found. Experiments were conducted in order to understand the effect of constant and variable punch velocity and the temperature on the mechanics of deformation. Variable punch velocity is found to improve the thickness distribution of the formed part.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sheet Metalworking;Schey’s Tribology in Metalworking;2023-09-30

2. Investigation of Al 5754 Alloy in Warm Processing Conditions in Terms of Deep Drawability and Sheet Thickness Variation by Finite Element Method;Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji;2023-09-27

3. Numerical analysis of non-isothermal warm deep drawing of an Al-Mg alloy using different yield criteria and experimental validation;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-07-06

4. Warm Forming Process for an AA5754 Train Window Panel;Journal of Manufacturing Science and Engineering;2021-10-29

5. Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work;Journal of Manufacturing Science and Engineering;2020-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3