Affiliation:
1. Institute of Dynamics and Vibration Research, Leibniz University Hannover, An der Universität 1, Garbsen 30823, Germany
Abstract
Abstract
This article addresses the vibrational behavior of bladed disk assemblies with nonlinear shroud coupling under random excitation. In order to increase the service life and safety of turbine blades, intense calculations are carried out to predict the vibrational behavior. The use of friction dampers for energy dissipation and suppression of large amplitudes makes the mechanical system nonlinear, which complicates the calculations. Depending on the stage, different types of excitation can occur in a turbine, from clearly defined deterministic to random excitation. So far, the latter problem has only been dealt with to a limited extent in the literature on turbomachinery. Nevertheless, there are in general different approaches and methods to address this problem most of which are strongly restricted with regard to the number of degrees-of-freedom (DOF). The focus of this paper is the application of an equivalent linearization method (ELM) to calculate the stochastic response of an academic model of a bladed disk assembly under random excitation. The nonlinear contact is modeled both with an elastic Coulomb-slider and a Bouc–Wen formulation to reproduce the hysteretic character of a friction nonlinearity occurring in the presence of a friction damper. Both the excitation and the response are limited to mean-free, stationary stochastic processes, which means that the stochastic moments do not change over time. Unlike previous papers on this topic, the calculations are performed on a full bladed disk assembly in which each segment is approximated with several degrees-of-freedom.
Funder
Bundesministerium für Wirtschaft und Energie
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献