Heat Pump Ground Coil Analysis With Thermal Interference

Author:

Mei V. C.1

Affiliation:

1. Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

When two horizontal ground coils are buried in the same trench, one on top of the other, the total energy exchange between coils and ground increases drastically over that of a single coil for the same trench length. However, because of the thermal interference between the two coils, the overall performance of the two-coil trench is very difficult to determine. Traditionally this type of problem is handled by the line source mirror-image approach. However, in applying the line source approach, the strength of the source is not known precisely and must be estimated. Most designers will estimate this value very conservatively in order to be on the safe side, and this will result in a longer coil than is actually needed. This paper provides a detailed mathematical model to describe the operation of the two-coil system that can calculate more realistically the performance of the ground coils, which in turn could make the ground coil heat pump system more economically competitive with other heating and cooling systems. The effect of thermal interference is clearly shown in the calculated soil temperature profile. The effect of fluid inlet positions, from upper or lower coils, is also studied. The comparison of measured and calculated daily energy absorbed from the ground indicated a maximum error of 27 percent, with the average error at less than 12 percent, calculated values are on the conservative side. This model is better than the line source approach for calculating the performance of two coils in the same trench. It can be used for design purposes, or used to check such coil designs by other methods.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3