Evaluation of Clinical and Technical Parameters to Customize Total Knee Arthroplasty Implants

Author:

Ghidotti Anna1,Landi Daniele1,Regazzoni Daniele1,Rizzi Caterina1

Affiliation:

1. University of Bergamo Department of Management, Information and Production Engineering, , Via Pasubio 7b, Dalmine, Bergamo 24044 , Italy

Abstract

Abstract Since every structure in the human body can vary, customization is important to choose the most appropriate medical option according to the patient. Total knee arthroplasty (TKA) is a surgical procedure for the knee replacement that has a high rate of patient’s dissatisfaction. Indeed, conventional prostheses are based on anthropometric data that accommodate common knees. However, mismatch can occur due to anatomical variations among the individuals. Thanks to the advances in imaging techniques and 3D modeling, it is possible to create customized knee implants starting from medical images. In this context, the present research proposes a methodology to design a customized knee implant taking into account clinical (e.g., prosthesis alignment and surgical cuts) and technical parameters (e.g., materials) that have a direct impact on TKA performance and patient’s satisfaction. Changing these parameters, different scenarios have been modeled and simulated to understand the most suitable combination. Finite element analysis (FEA) has been employed to simulate and compare the proposed customized models, changing the different clinical and technical parameters. Stress induced by different combinations of the parameters has been evaluated to choose the optimal solution among the eight proposed scenarios. The optimum is reached with a physiological alignment, with six femoral facets and the ultra-high molecular weight polyethylene (UHMWPE) tibial insert. The implant design maintains the natural joint line and allows preserving more bone. The material is the parameter that mostly influences the stress distribution.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3