Nonlinear Metabolic Dynamics of the Pancreas and Liver

Author:

Bergman R. N.1,Bucolo R. J.1

Affiliation:

1. Department of Biomedical Engineering, University of Southern California, Los Angeles, Calif.

Abstract

Organ level dynamic testing of the metabolic functions of the pancreas and liver have revealed some striking nonlinearities. Glucose provokes a biphasic response in insulin secretion, with dynamic asymmetry and time dependent gain. Amino acid stimulated insulin secretion dynamics contrasted with the dynamic response to glucose in that the gain was not time dependent, and the final phase of insulin secretion did not occur. Also, the magnitude of the amino acid response was very sensitive to the glucose level. A nonlinear model is proposed which accounts for the observed insulin secretory dynamics. The dynamic response of the net glucose balance of the liver in response to glucose was also studied and it was found that, in contrast to the pancreas, the liver can be represented simply by a first order process with a nonlinear static gain curve. These dynamic studies should help explain the nonlinear behavior of the metabolic system at the level of the whole animal.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Studies Based on the Pharmacokinetic Model of Diabetes Mellitus;2009 Second International Conference on Computer and Electrical Engineering;2009

2. Mathematical models of insulin secretion in physiological and clinical investigations;Computer Methods and Programs in Biomedicine;1994-01

3. The implantable artificial pancreas;International Handbook of Pancreas Transplantation;1989

4. Selective effects of secretagogues on insulin secretion: A mathematical model;Computers in Biology and Medicine;1984-01

5. Applications of System Identification;Control, Identification, and Input Optimization;1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3