Turbine Platform Cooling and Blade Suction Surface Phantom Cooling From Simulated Swirl Purge Flow

Author:

Li Shiou-Jiuan1,Lee Jiyeon2,Han Je-Chin1,Zhang Luzeng3,Moon Hee-Koo3

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 e-mail:

2. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

3. Solar Turbines Incorporated, San Diego, CA 92101

Abstract

This paper presents the swirl purge flow on a platform and a modeled land-based turbine rotor blade suction surface. Pressure-sensitive paint (PSP) mass transfer technique provides detailed film-cooling effectiveness distribution on the platform and phantom cooling effectiveness on the blade suction surface. Experiments were conducted in a low-speed wind tunnel facility with a five-blade linear cascade. The inlet Reynolds number based on the chord length is 250,000. Swirl purge flow is simulated by coolant injection through 50 inclined cylindrical holes ahead of the blade leading edge row. Coolant injections from cylindrical holes pass through nozzle endwall and a dolphin nose axisymmetric contour before reaching the platform and blade suction surface. Different “coolant injection angles” and “coolant injection velocity to cascade inlet velocity” result in various swirl ratios to simulate real engine conditions. Simulated swirl purge flow uses coolant injection angles of 30 deg, 45 deg, and 60 deg to produce swirl ratios of 0.4, 0.6, and 0.8, respectively. Traditional purge flow has a coolant injection angle of 90 deg to generate swirl ratio of 1. Coolant to mainstream mass flow rate (MFR) ratio is 0.5%, 1.0%, and 1.5% for all the swirl ratios. Coolant to mainstream density ratio maintains at 1.5 to match engine conditions. Most of the swirl purge and purge coolant approach the platform; however, a small amount of the coolant migrates to the blade suction surface. Swirl ratio of 0.4 has the highest relative motion between rotor and coolant and severely decreases film cooling and phantom cooling effectiveness. Higher MFR of 1% and 1.5% cases suffers from apparent decrement of the effectiveness while increasing relative motion.

Publisher

ASME International

Subject

Mechanical Engineering

Reference39 articles.

1. Film Cooling,1971

2. Gas Turbine Film Cooling;AIAA J. Propul. Power,2006

3. Fundamental Gas Turbine Heat Transfer;ASME J. Therm. Sci. Eng. Appl.,2013

4. Heat Transfer Near Turbine Nozzle Endwall;Ann. N. Y. Acad. Sci.,2001

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3