Controlling Corner Stall Separation With Plasma Actuators in a Compressor Cascade

Author:

Akcayoz Eray1,Duc Vo Huu2,Mahallati Ali3

Affiliation:

1. Mem. ASME Pratt & Whitney Canada, 1000 Marie-Victorin Boulevard, Longueuil, QC J4G 1A1 Canada e-mail:

2. Mem. ASME Department of Mechanical Engineering, École Polytechnique de Montréal, 2900 boulevard Edouard-Montpetit, 2500 chemin de Polytechnique, Montreal, QC H3T 1J4, Canada e-mail:

3. Mem. ASME Concepts NREC, White River Junction, VT 05001 e-mail:

Abstract

This paper presents a numerical and experimental assessment of a plasma actuation concept for controlling corner stall separation in a highly loaded compressor cascade. CFD simulations were first carried out to assess actuator effectiveness and determine the best actuation parameters. Subsequently, experiments were performed to demonstrate the concept and confirmed the CFD tool validity at a Reynolds number of 1.5 × 105. Finally, the validated CFD tool was used to simulate the concept at higher velocities, beyond the experimental capability of existing plasma actuators. These results were used to obtain a preliminary scaling law that would allow approximation of the plasma actuation requirements at realistic operating conditions. Several configurations were examined, but the most effective setup was found to be when plasma actuators were mounted upstream of the separation point on both the suction surface and the endwall. Most of the improvement in total pressure loss stemmed from the suction surface actuator. Comparison with experimental data showed that the CFD simulations could capture the flow features and the effect of plasma actuation reasonably well. Simulations at higher flow velocities indicated that the required plasma actuator strength scales approximately with the square of the Reynolds number.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3