Prediction of Rotor Dynamic Destabilizing Forces in Axial Flow Compressors

Author:

Colding-Jorgensen J.1

Affiliation:

1. O̸degaard & Danneskiold-Samso̸e ApS, 1, Kroghsgade, DK-2100 Copenhagen, Denmark

Abstract

It has been shown by Thomas (1958) and Alford (1965), that axial flow turbo-machinery is subject to rotor dynamic destabilizing gas forces produced by the circumferential variation of blade-tip clearance when the rotor is whirling. However, the magnitude and direction of these forces have yet to be clarified. For example, it is still uncertain, under which circumstances the rotor whirl direction will be forward, and when it will be backward, with respect to the rotation. In the present paper, a simple analysis of the perturbed flow in an axial compressor stage with whirling rotor is presented, based on the actuator disc analysis of Horlock and Greitzer (1983), and the gas force on the rotor is calculated on this basis. It appears that in the normal operation range of an axial compressor, the whirl direction is predicted to be forward always. Backward whirl is predicted to take place only at very low flow rates, well below the normally expected stall limit. Experimentally, forces were indeed found in direction of backward whirl for low flow rates, and in direction of forward whirl for high flow rates, in the results reported by Vance and Laudadio (1984), as analyzed by Ehrich (1989). While this experimental evidence supports the present theory qualitatively, a direct comparison of the measured and predicted destabilizing force has yet to be carried out.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3