Event-Based Production Control for Energy Efficiency Improvement in Sustainable Multistage Manufacturing Systems

Author:

Li Yang12,Wang Jun-Qiang12,Chang Qing3

Affiliation:

1. Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China;

2. Performance Analysis Center of Production and Operations Systems (PacPos), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China e-mail:

3. Department of Mechanical and Aerospace Engineering, The University of Virginia, Charlottesville, VA 22904 e-mail:

Abstract

There has been an increasing trend for manufacturers to shift toward sustainable manufacturing strategies in response to an ever-growing pressure from fluctuating energy price and environmental crisis. Reducing energy consumption is considered as an important step to achieve the sustainability of a production system. This paper proposes an event-based control methodology to improve the production energy efficiency through strategically switching appropriate stations to energy saving mode. Based on an event-based analysis of production dynamics, an analytical approach is developed to quantitatively predict the system level production loss resulted from an energy saving control event (ESCE). A genetic-based control algorithm is proposed to balance the trade-off between the gain from energy saving and the expense of throughput loss. The energy improvement analysis results in a fundamental understanding of production energy dynamics and a significant decrease of energy cost for a manufacturing facility. Numerical case studies are performed to validate the effectiveness of the proposed method. It is found that the control method can effectively reduce energy cost, while only slightly impacting production.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3