Topology Optimization for Static Shape Control of Piezoelectric Plates With Penalization on Intermediate Actuation Voltage

Author:

Kang Zhan1,Wang Xiaoming2,Luo Zhen3

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

2. National Engineering Laboratory for System Integration of High Speed Train, CSR Qingdao Sifang Locomotive & Rolling Stock Co., Ltd., Qingdao 266111, China

3. School of Electrical, Mechanical and Mechatronic Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia

Abstract

This paper investigates the simultaneous optimal distribution of structural material and trilevel actuation voltage for static shape control applications. In this optimal design problem, the shape error between the actuated and the desired shapes is chosen as the objective function. The energy and the material volume are taken as constraints in the optimization problem formulation. The discrete-valued optimization problem is relaxed using element-wise continuous design variables representing the relative material density and the actuation voltage level. Artificial interpolation models which relate the mechanical/piezoelectrical properties of the material and the actuation voltage to the design variables are employed. Therein, power-law penalization functions are used to suppress intermediate values of both the material densities and the control voltage. The sensitivity analysis procedure is discussed, and the design variables are optimized by using the method of moving asymptotes (MMA). Finally, numerical examples are presented to demonstrate the applicability and effectiveness of the proposed method. It is shown that the proposed method is able to yield distinct material distribution and to suppress intermediate actuation voltage values as required.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference40 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3