Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—II: Addressing Passage-Averaged and Large-Eddy Simulation Modeling Issues in Turbomachinery Flows

Author:

Sinha Manish1,Katz Joseph1,Meneveau Charles1

Affiliation:

1. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218

Abstract

The present paper addresses two basic modeling problems of the flow in turbomachines. For simulation of flows within multistage turbomachinery, unsteady Reynolds-averaged Navier–Stokes (RANS) of an entire series of blade rows is typically impractical. On the other hand, when performing RANS of each blade row separately one is faced with major difficulties in matching boundary conditions. A popular remedy is the “passage-averaged” approach. Unsteady effects caused by neighboring rows are averaged out over all blade orientations, but are accounted for through “deterministic” stresses, which must be modeled. To experimentally study modeling issues for deterministic stresses we use particle image velocimetry data of the flow in a centrifugal pump with a vaned diffuser that includes the flow in the impeller, the gap between the impeller and diffuser, between the diffuser vanes and within the volute downstream. The data have been presented in part A of this paper (Sinha and Katz, 1998, “Flow Structure and Turbulence of a Centrifugal Pump with a Vaned Diffuser,” Proceedings of the ASME Fluids Engineering Division, Washington, DC). Deterministic stresses are obtained from the difference between the phase-averaged and passage-averaged data, whereas the Reynolds stresses are determined from the difference between the instantaneous and phase averaged data. In agreement with previous findings, the deterministic stresses are larger than the Reynolds stresses in regions close to the interface between blade rows, and thus must be carefully accounted for in passage-averaged simulations. The Reynolds stresses are larger in regions located far from the transition region. The second series of issues involves modeling for large-eddy simulation. The measured subgrid stresses determined by spatially filtering the data are compared to eddy viscosity models and show significant discrepancies, especially in regions with separating shear layers. Backscatter of energy that persists during phase averaging is also observed. [S0098-2202(00)00901-9]

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3